

磷脂酶 C (PLC) 活性检测试剂盒 Phospholipase C (PLC) Activity Assay Kit

P-Nitrophenylphosphorylcholine

Catalog Number **AKFA015M**Storage Temperature **2-8°C**Size **100T/96S**

Microanalysis Methods

磷脂酶 C (PLC) 活性检测试剂盒

Phospholipase C (PLC) Activity Assay Kit

一、产品描述

磷脂酶 C (PLC) 广泛存在于微生物及动植物的组织和细胞中,是一种能够水解甘油磷酸酯 C3 位点甘油磷酸酯键的脂类水解酶,在生物生命活动中起着第二信使的作用,作为磷脂酰肌醇信号通路的关键酶,在细胞代谢、细胞传递、生长发育等方面具有重要作用。

磷脂酶 C 能够催化 NPPC 水解生成对硝基苯酚,产物在 410 nm 处具有特征吸收峰,通过吸光值变化即可表征磷脂酶 C 的活性。

二、产品内容

名称	试剂规格	储存条件
提取液	液体 120 mL×1 瓶	4℃保存
试剂一	液体 100 mL×1 瓶	4℃保存
试剂二	液体 10 mL×1 瓶	4°C避光保存
试剂三	液体 8 mL×1 瓶	4℃保存

三、产品使用说明

测定过程中所需要的仪器和试剂:可见分光光度计/酶标仪、微量玻璃比色皿/96 孔板、研钵/匀浆器、可调式移液器、台式离心机、恒温水浴/培养箱和蒸馏水。

1.粗酶液的制备(可根据预实验结果适当调整样本量及比例)

- ①细菌或细胞: 离心收集细菌或细胞至离心管内, 按照细菌或细胞数量(10⁴个): 提取液体积(mL)为(500-1000): 1的比例(建议500万细菌或细胞加入1mL提取液)处理样品, 冰浴超声破碎(功率300 W, 超声3 s, 间隔7 s, 总时间3 min), 4°C 12000 rpm 离心5 min, 取上清置于冰上待测。
- ②组织:按照组织质量(g): 提取液体积(mL)为1:(5-10)的比例(建议称取 0.1 g, 加入 1 mL 提取液)处理样品,冰浴匀浆,4℃12000 rpm 离心 5 min,取上清置于冰上待测。
 - ③血清(浆)、培养液等液体样本:直接测定或适当稀释后再进行检测。

2.测定步骤

- ①分光光度计/酶标仪预热 30 min 以上,调节波长至 410 nm,蒸馏水调零。
- ②在96孔板或离心管中依次加入下列试剂:

 试剂	测定组	空白组	
	(μL)	(μL)	
粗酶液	20	-	
试剂一	-	20	
试剂二	100	100	
充分混匀,	37℃准确反应 30 min		
试剂三	80	80	

吸光值测定: 测定 410 nm 处吸光值,记为 A 测定和 A 空白;计算 $\Delta A = A$ 测定-A 空白。注:空白组只需测定 1-2 次。

- 3.磷脂酶 C (PLC) 活性计算
- 3.1 使用 96 孔板测定的计算公式 (标准曲线: y=0.0097x-0.0092, $R^2=0.9992$)
 - ①按组织蛋白浓度计算

单位定义:每 mg 组织蛋白每分钟生成 1 nmol 对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC(U/mg prot) =
$$\frac{(\Delta A + 0.0092) \times V \ \cancel{\text{反}} \ \cancel{\text{E}}}{0.0097 \times V \ \cancel{\text{样}} \times \text{Cpr} \times \text{T}} = \frac{34.36 \times (\Delta A + 0.0092)}{\text{Cpr}}$$

②按组织样本质量计算

单位定义:每g组织每分钟生成1nmol对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC (U/g) =
$$\frac{(\Delta A + 0.0092) \times V \ \cancel{\text{反}} \times V \ \cancel{\text{F}} \times V}{0.0097 \times V \ \cancel{\text{F}} \times W \times T} = \frac{34.36 \times (\Delta A + 0.0092)}{W}$$

③按细菌或细胞数量计算

单位定义:每10⁴细菌或细胞每分钟生成1 nmol 对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC(U/10⁴ cell) =
$$\frac{(\Delta A + 0.0092) \times V \text{ 反总} \times V \text{ 样总}}{0.0097 \times V \text{ 样×细菌或细胞数量} \times T} = \frac{34.36 \times (\Delta A + 0.0092)}{\text{细菌或细胞数量}}$$

④按液体样本体积计算

单位定义:每 mL 液体样本每分钟水解 NPPC 生成 1 nmol 对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC(U/mL) =
$$\frac{(\Delta A + 0.0092) \times V$$
 反总 $0.0097 \times V$ 样×T = 34.36×($\Delta A + 0.0092$)

3.2 使用微量玻璃比色皿测定的计算公式(标准曲线: y=0.0194x-0.0092, $R^2=0.9992$)

①按组织蛋白浓度计算

单位定义:每 mg 组织蛋白每分钟水解 NPPC 生成 1 nmol 对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC(U/mg prot) =
$$\frac{(\Delta A + 0.0092) \times V$$
 反总 $\frac{17.18 \times (\Delta A + 0.0092)}{Cpr}$

②按组织样本质量计算

单位定义:每g组织每分钟水解 NPPC 生成 1 nmol 对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC (U/g) =
$$\frac{(\Delta A + 0.0092) \times V \ \textit{反} \, \& \times V \ \textit{样} \, \&}{0.0194 \times V \ \textit{\'{}} \times W \times T} = \frac{17.18 \times (\Delta A + 0.0092)}{W}$$

③按细菌或细胞数量计算

单位定义:每 10⁴ 细菌或细胞每分钟水解 NPPC 生成 1 nmol 对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC(U/10⁴ cell) =
$$\frac{(\Delta A + 0.0092) \times V \text{ 反总} \times V \text{ 样总}}{0.0194 \times V \text{ 样×细菌或细胞数量} \times T} = \frac{17.18 \times (\Delta A + 0.0092)}{\text{细菌或细胞数量}}$$

④按液体样本体积计算

单位定义:每 mL 液体样本每分钟水解 NPPC 生成 1 nmol 对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC(U/mL) =
$$\frac{(\Delta A + 0.0092) \times V$$
 反总
0.0194×V 样×T = 17.18×($\Delta A + 0.0092$)

四、注意事项

为保证结果准确且避免试剂损失,测定前请仔细阅读说明书(以实际收到说明书内容为准),确认试剂储存和准备是否充分,操作步骤是否清楚,且务必取 2-3 个预期差异较大的样本进行预测定,过程中问题请您及时与工作人员联系。

